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It is known that the breakup by surface tension of a cylindrical interface containing 
a viscous liquid can be damped by axial motion of the underlying liquid and that for 
an annular film the capillary instability can be completely suppressed (disturbances 
of all wavelengths decay) by certain axial velocity profiles. Here, using a linear 
stability analysis, it is shown that complete stabilization can also occur for 
thermocapillary-driven axial motions. However, the influence of thermocapillary 
instabilities typically shrinks the window in parameter space where stabilization is 
found, relative to the isothermal case. The influence of Reynolds, surface tension, 
Prandtl, and Biot parameters on limits of stabilization is calculated using 
continuation techniques. It is observed that windows of stabilization first open with 
topological changes of the neutral curves in parameter space. A long-wave analysis 
unfolds the nature of the singularities responsible for several of these topological 
changes. The analysis also leads to the physical mechanism responsible for (long- 
wave) stabilization and in certain cases to necessary conditions for (long-wave) 
stabilization. 

1. Introduction 
The capillary instability of a cylindrical interface can be dramatically influenced 

by the velocity profile of the liquid it contains (Xu & Davis 1985; Russo & Steen 
1989). Base states with certain axial motions are found to be stable to disturbances 
of all wavelengths according to linear theory (Russo & Steen 1989). However, the 
axial motions for which complete stabilization has been found so far have been 
generated by mechanical means, viz. applied interfacial shear and applied axial 
pressure gradients (i.e. isothermally). We ask whether axial motions driven by 
thermocapillary forces will also give complete stabilization ; i.e. will the coupling of 
the thermal and mechanical disturbances destroy the stabilization observed in the 
isothermal case ? 

Complete stabilization opens intriguing possibilities for technological application. 
Indeed, the effect has already been exploited to a limited extent in order to transport 
heavy crude through pipelines more efficiently by using a less viscous liquid to 
lubricate the pipe wall. A stable interface between the oil-core and the lubricant- 
annulus is the key to reducing the required pumping power (Charles, Govier & 
Hodgson 1961 ; Russel & Charles 1959 ; Zubillaga et al. 1985). It has been shown more 
recently (e.g. Preziosi, Chen & Joseph 1989) that this core-annular flow (in the 
absence of gravity) can be completely stable for certain viscosity ratios. Other 
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(potential) applications include processes for producing materials which depend on 
interfacial tension to contain a melt. Examples of such processes are liquid- 
encapsulated Czochralski crystal growth, float-zone crystal growth under low- 
gravity conditions, and the ‘Taylor-wire ’ process for the manufacture of metallic 
wires. Furthermore, thermocapillary stabilization may explain the apparent 
observation of a very long stable interface (nearly twice the static limit) in a molten 
indium sample taken from a float-zone experiment in a space laboratory (STS Flight 
41D, September 1984, Murphy et al. 1987). 

Xu & Davis (1985) consider a liquid cylinder in a gas and consider both 
thermocapillary- and mechanically-driven applied shear. I n  both cases the capillary 
breakup is suppressed, but not completely. Russo & Steen (1989) consider a broader 
class of geometry, a liquid bridge of annular cross-section, but restrict to the 
isothermal case. The bridge is bounded on the inside by a rigid rod. They find that 
complete stabilization is favoured by small gap ratios (the ratio of the depth of the 
liquid layer to the mean interface radius) ; however, stabilization can occur for gap 
ratios up to  about a for the most favourable base flow. 

Here, base flows where the shear is caused by a gradient in surface tension induced 
by a linear temperature gradient along the interface are considered. Hydrothermal 
(thermocapillary) instabilities compete with the capillary instability and both are 
influenced by the base flow. We find that although thermal effects do not completely 
destroy the isothermal stabilization they do weaken it. 

First we consider a one-parameter family of base states, parametrized by the 
strength of the thermocapillary force and subject to  a constant ambient pressure 
field. The study of the linear stability of these base states shows that for small layer 
thicknesses, there exists a range of Reynolds numbers (driving force due to applied 
shear stresses generated by thermocapillarity), moderate but not too large, for which 
disturbances are completely stabilized. Stabilization is favoured a t  small Prandtl 
number P, relatively small surface tension number S and large Biot number B. For 
large P and large S, complete stabilization is not possible. 

Next, we generalize to a two-parameter family of base states where the new 
parameter is the axial pressure gradient. Although members of this family may be 
difficult to realize in experiment, their consideration leads to a clearer understanding 
of the physics. The stability behaviour of these base states is qualitatively like that 
of the isothermal case where a similar parametrization is used. Complete stabilization 
disappears for base states with a slight ‘return flow ’ character ; these states become 
unstable to long waves. The range of Reynolds numbers corresponding to  
stabilization and the influence of the other parameters on this range is reported. 

The numerical solution of the linear stability equations for all wavelengths 
suggests that  the heart of the physics responsible for complete stabilization can be 
captured with a long-wave analysis. Indeed, long-wave asymptotics reveal the 
structure of singularities in the ‘neutral surfaces ’ of the parameter space which 
characterize the ‘ birth ’ of stabilization. Furthermore, this analysis shows that the 
physical mechanism for stabilization, which in the isothermal case depends on a 
(laminar) Reynolds stress interaction with the base flow, is modified by the thermal 
field but in a way which leaves its essential features unchanged. 

The main contributions of this paper are the description of the mechanism of 
stabilization, and the analysis of the singularities in the neutral curves in the long- 
wave limit; each is the first of its kind as far as we are aware. The numerical 
computations are more important as they relate to and frame the long-wave analysis 
perhaps than for the results in themselves. Indeed, these results are anticipated to a 
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FIGURE 1.  Sketch of the annular liquid bridge. The shaded area is the rigid rod, the equilibrium 
interface is at r = r,,. The shear stress 7 for the thermocapillary base state is caused by a linear 
temperature difference along the interface. 

certain extent by the isothermal analysis (Russo & Steen 1989). Furthermore, the 
long-wave analysis is useful as a relatively easy and inexpensive guide to interesting 
regions in parameter space where a full numerical analysis can then supply details. 

2. Formulation 
Consider an infinitely long axisymmetric liquid bridge of annular cross-section 

bounded laterally on the inside by a rigid rod with radius r, and on the outside by 
a gas-liquid interface of mean radius r, (figure 1 ) .  The bridge is composed of an 
incompressible Newtonian liquid having dynamic viscosity p, density p and mean 
surface tension uo, i.e. at  temperature T,*. The thermal diffusivity of the liquid is k .  
Let H = r,-ri  denote the mean depth of the liquid layer. 

A constant temperature gradient dT*/dz* = -b ,  b > 0 ,  is imposed along the axis 
of the bridge. The surface tension u is assumed t o  depend linearly on the interfacial 
temperature T*, i.e. u = uo( l -c (T*-T$)) ,  where T$ is the interface temperature, 
say at z* = 0. The temperature gradient induces a shear stress r = uocb at the 
interface. Gravity is assumed absent. A dimensionless temperature Tis defined by T* - 
T,* = bHT. 

Following Xu & Davis (1985) and Russo & Steen (1989), velocity, length, time and 
pressure are scaled with W, = (uo/pH)i, H ,  H / W ,  and u o / H ,  respectively. In addition, 
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a second velocity scale associated with the shear stress at  the interface due to 
thermocapillarity, W, = r H / y ,  is identified. 

A cylindrical coordinate system ( r ,  9, z) is used. Let the interface be described as 
r = ~(9, z )  and let the velocity vector q have components (u, TI, w). In non-dimensional 
variables, the equations describing the evolution of the flow in the bridge and the 
interface are presented in Xu & Davis (1985). 

The heat flux balance at  the interface is given by the equation 

where Q is a heat flux imposed on the surrounding environment (determined by the 
base state under consideration) and T, is the temperature of the ambient gas far from 
the interface. Various choices of Q have been used in the literature and below we keep 
two choices in order to compare with previous work. 

The dimensionless groups in the equations are the Biot number B, the surface 
tension number S ,  the Reynolds number R, the Prandtl number P and the ratio of 
the liquid layer depth to mean interfacial radius A,  

where h is the surface heat transfer coefficient. 
The boundary conditions at  the (insulated) rigid wall r = r , /H are 

3. Base states 
The base-state interface is perfectly cylindrical (7 = A-l ) .  Overbars denote 

quantities associated with the base-state solution. The induced shear stress at the 
interface drives a steady parallel shear flow in the bridge ; let /3 = (1 --A)/A and y = 
1/A denote the inner and outer boundaries of the radial domain, respectively. The 
solution for the velocity and pressure is given by 

a = g = Q ,  (4a) 

r 
a ( r )  = f1(r2-/32)+f21n5, 

and here S is a constant. For a fixed geometry (fixed A ) ,  the axial velocity a ( r )  is a 
two-parameter family of profiles (parametrized by, say, f ,  and 6,). For a fixed 
uniform ambient pressure, the two parameters are related through the balance of 
normal stress at the interface, leaving a one-parameter family. This is one class of 
base states which we study below. However, it is useful to also consider the full two- 
parameter family of velocity profiles. To achieve these in the laboratory, one must 
arrange the ambient pressure to vary linearly in the axial direction with a gradient 
which depends on the parameters. 
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In order to make these two classes of base states precise, we first write down the 
base-state temperature field. The solution for the temperature is given by 

T,(z) = -2, T(T,z)  = - z + F ( r ) ,  ( 5 4  
F ( r )  = C, + s@[c, In T + C, r4 + C, r2 + C, 1c2 In (T IP ) ] ,  (5b)  

where C, = -&3'(E2 +/3'&), C,  = -+El, C, = -CZ/P2 and C,  = ,it2. Now one can 
choose C, such that p(y) = 0 and satisfy ( 1 )  by arranging Q = - T,(y), or one can just 
put Q = 0 and determine C, from (1). In the first case the base-state temperature does 
not depend on B (for later reference this base state is called Bo) where in the second 
case it does (called al). We include both cases for comparison with previous results 
although we later restrict attention to the 4 base state. 

The normal stress balance at  the interface, which depends on the temperature field 
through the variation of surface tension, is described by the equation 

p-pa = A ( I - S - ~ R ( - Z + + ( ~ ) ) ,  (6a)  

p(z)  - const = S-lRA[z- F(y)]  + A  

where pa is the ambient pressure field. In  a constant ambient pressure field (pa = 
const) the exact solution for the base state pressure is given by 

6b) 
and hence the parameters El and 6, are related by 6 = S-lRA. In view of (4 ) ,  these 
axial velocity profiles constitute a one-parameter family, parametrized, say, by 
S-iR. Under thermal conditions corresponding to Bo, the planar linear flow base state 
of Smith & Davis (1983) is recovered from this class of base states as A + 0 (with a 
straightforward rescaling). 

The more general class of base states is motivated by taking the gradient of (6a)  
which leads to the ambient pressure field 

pa@) = (S-S-lRA) 2, ( 7 4  

p ( z )  = S Z + A - S - ~ R A F ( ~ ) .  (7 b )  

and the base state pressure field 

Here, for a fixed geometry, the family of velocity profiles (4a ,  b )  is controlled by the 
parameter 6@ in addition to S-iR. 

Several limiting cases of this class of base states are noteworthy. First, for an 
isothermal situation, T(r, z )  = T, = constant and hence p(y) = 0 (take P = 0 for 
thermal conditions B,). The shear stress 7 which appears in the definition of R in (2) 
now corresponds to a shear stress applied by mechanical means (i.e. a primitive 
parameter). The two-parameter family of base states considered by Russo & Steen 
(1989) are recovered. Of course, these also require a linear ambient pressure field. 

A different limit, the base state of circular cross-section with thermocapillary- 
driven axial flow used in Xu & Davis (1985), can also be recovered by letting A + 1. 
This requires the shear at  the centre line to vanish (& = 0 in (4e ) )  and hence that 
6 = 2S-'R. This effective replacement of the no-slip condition (3 )  by a boundedness 
condition at the centreline is completed by adding a constant to the base-state 
velocity. This base state is also an exact solution if a linear ambient pressure field 
is imposed. Otherwise, for a uniform ambient field, it  is approximate with an error 
on the order of S-'R. 

Note that core-annular flow, where the fluid in the annulus is driven by a linear 
pressure gradient, is one realization of an imposed linear ambient pressure field. 
However, the interactions between core and annulus in the presence of disturbances 
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(stability) are broader in scope than those we consider and hence core-annular flow 
is not a subcase of our analysis. 

4. Linear stability analysis 

disturbance (denoted by a prime) 
Each dependent variable is expressed as the sum of the base state and some small 

( 4 , P ,  7, T) = (Q, n tf9 T) + (q’, P’, 7’? T), 

(q’,p’,q’, T) ( ~ , Q , z ,  t) = (4(r),Ar),.Lj, $(r))exp{i(uz+m9---t)}. 

and a ‘normal mode’ analysis is pursued, i.e. 

(8b)  
In carrying out this analysis formally, there arises a problem in separating the 
linearized normal stress condition in z. This is due to the influence of the variation 
of the surface tension on the normal stress a t  the interface. 

Two ways to accommodate a separation of variables are mentioned in Smith & 
Davis (1983); each constrains the results. One can either neglect the above- 
mentioned influence (cf. x = 0 in ( l l d )  below) or take it approximately into account 
(cf. x = 1 in (1 1 d )  below). Either case leads to a restriction on the axial wavenumber 
u which takes the form 

Note that for the case go, the value of p ( y )  vanishes and the restriction is that used 
in Xu & Davis (1985) and Smith & Davis (1983). In case %, equation (9) is more 
restrictive since p ( y )  > 0. It will turn out that for the parameter range in which we 
are interested (large S, bounded R,  small A )  the condition (9) will not limit the results 
in any significant way. 

We ignore the restriction (9) for the moment to obtain the structure of neutral 
curves for all wavenumbers and to obtain asymptotic expressions for the long-wave 
behaviour (small a). 

Upon substitution of ( 8 b )  in the linearized equations an eigenvalue problem is 
obtained. Here only temporal instabilities are investigated and therefore the 
eigenvalue is w = A+iv. The real part A is the angular frequency and the complex 
part v is the growth rate. If v > 0 the base state is unstable, while if v < 0 it is linearly 
stable. The two-point eigenvalue problem for ( t j , $ ,  i ,  $), where t j  = (6, B, &), is given 
by 

1 imw 
r r u,+-u+-+iaw = 0, ( 1 0 4  

-p, = u(iaii?-iw), 

2imu imp - v(ium-iw), 1 m2+ 1 
S-22) I[ rr +-v r -v ( - ,,.2 + “ 2 ) + 7 - ] - 7 -  

s-: w,,+-wr-w -+u2 -um’-iup = w(ium-iw), L ($ ) ]  
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where the hats are dropped for convenience and the primes denote derivatives in r .  
At r = y ,  

( I l a )  

( l i b )  

( I l c )  

-x(iayX-ln)+y(l-S-lR~) (a2+A2(m2-1)) = 0, ( I I ~ )  

T , + B T + y ( p + B p ) + i a r  = 0, ( I l e )  

u = v = w = T = O  r ?  Ulf) 

u + iwy - iayw = 0, 

v, +A(imu- v + i m S - h ( y p  + T ) )  = 0: 

w, + yw" + ia( u + X - h (  y f" + T ) )  = 0, 

-p+2X-~(~,-iato'y)-AS-~R(T+~,@') 

and the boundary conditions at r = are 

and where two approximations are possible : 

x = 0 corresponds to the formulation used in Xu & Davis (1985); 

x = 1 corresponds to the formulation used in Smith & Davis (1983). 

(12a)  

(12b) 

5. Results 
The two-point eigenvalue problem defined by (lo), (11) is solved numerically by 

a combination of two methods. A starting algorithm is used to calculate one 
eigensolution a t  a branch. This algorithm combines a two-dimensional search for 
roots with a boundary-value solver and is described in detail in Dijkstra (1989). A 
spline interpolation of this numerically calculated solution provides the exact 
solution for the AUTO (Doedel 1980) software. With this software, continuation of 
eigenvalue branches can be performed in parameter space. In addition it is possible 
to continue limit points (folds) in parameter space. The prescribed accuracy in AUTO 
is lAul,J( 1 + lul,) c E and IAOl/( 1 + 101) c E where u and 8 indicate the solution vector 
and any (free) parameter, respectively. In a limit point continuation, E = is 
prescribed ; in any other case E = 

To justify the numerical results we compared them with analytic results obtained 
for axisymmetric long waves (a  + 0) ,  and with other available numerical results, i.e. 
the full cylinder (Xu & Davis 1985) and the two-dimensional layer (A  + 0) (Smith & 
Davis 1983). Our results (x = 1 )  are within 0.1 % of the values listed in table 1 of 
Smith & Davis (x = 1). To give an idea of the difference between the x = 0 and x = 1 
approximations we note that our results for x = 0 are within 5 %  of the x = 1 
values. Our numerical results compare favourably with analytic and other numerical 
results in all cases tested including comparisons with results of Russo & Steen (1989). 

From now on, we only consider the base state q, i.e. Q = 0 in (5) since it is more 
easily (physically) realizable than the base state Bo. 

is prescribed. 

5.1. Base states subject to uniform ambient pressure : the one-parameter family. 
We recall from Russo & Steen (1989) that in the isothermal case and for S = lo4, the 
region of complete stabilization of the axisymmetric m = 0 mode occurs at relatively 
small A .  Therefore, we start with parameter values A = 0.3, S = lo4, B = 1 and P = 
0.1. In addition, we first consider x = 0. In figure 2,  three eigenvalue branches are 
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FIQURE 2. Eigenvalue branches for the axisymmetric (m = 0) mode showing (a) the growth factor 
Y and ( b )  the angular frequency A as a function of the wavenumber a for values of the Reynolds 
number R = 10 and 100; the other parameters have values B = 1 ,  A = 0.3, P = 0.1 and S = lo4 
(one-parameter family of base states ($Il)). Curves in both figures belonging to  the same eigenvalue 
branch have a common number. 

a 

shown, each for R = 10 and 100; the growth factor v is shown in figure 2(a) and the 
angular frequency h is presented in figure 2 ( b ) .  Each eigenvalue branch (with 
eigenvalue h+iu) is represented by one curve in each figure having a common 
number. 

There are two branches which are unstable in a wavenumber interval (one for 
R = 10, one for R = 100). We observe that increasing R stabilizes long waves 
(capillary instabilities) but that large wavenumbers (shear waves) are destabilized. 
The unstable waves are travelling to the right (frequency is positive). 

The neutral curves (locus of points @,a) where the growth factor is zero) are 
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a 
FIQURE 3. Neutral curves for the axisymmetric (m = 0) mode for different A and B = 1 ,  P = 0.1 and 
S = lo4 (one-parameter family of base states (4)). Hatching along one side of a curve indicates the 
unstable region. 

presented in figure 3 for several values of A and for the same values of x, P, B and 
S. The neutral states for each A are comprised of two curves. Of the two branches 
only one exists for small wavenumbers. Let us call this the capillary branch R = 
R,(a) ; the other branch we call the shear branch R = &(a). Each neutral curve 
divides the (a,R)-plane into a stable and unstable region. The unstable region is 
indicated by the hatches along each neutral curve. 

As in the isothermal case, a window of shear stresses exists (for small A )  at which 
complete stabilization to axisymmetric disturbances occurs. Note that the 
stabilization range appears through a topological change of the neutral curves. This 
transition occurs a t  sufficiently large a to have physical content with respect to 
restriction (9). 

We now turn to the non-axisymmetric modes. Neutral curves for the m = 0 , l  and 
2 modes are presented in figure 4 for A = 0.1. The other azimuthal modes, m 2 3, are 
more stable than the m = 2 mode and are not shown. From this figure we conclude 
that the non-axisymmetric modes do not change the R-range for which complete 
stabilization occurs at A = 0.1. The minima of the m = 0, m = 1 and m = 2 neutral 
curves in this case (for a / A  > 1) are a t  R = 53.0, R = 53.4 and R = 55.8, respectively. 
Hence the m = 1 mode is only slightly more stable than the m = 0 mode a t  large 
wavenumbers. Note that for small wavenumbers the m = 2 mode is more unstable 
than the m = 1 mode. 

Next, the effect of changing x ,  S ,  P, B on the two boundaries of the R-interval for 
which complete stabilization occurs a t  A = 0.1 is considered. For this purpose, define 
R, = max RJa) and R, = min R,(a). In  addition, let a, and a, be the values of a for 
which these extrema are attained. In the case a, = 0 (we did not find a case for which 
a, =k 0 ) ,  R, is calculated analytically by the long-wavelength analysis and its change 
in parameter space is obtained easily. The variation of (au,&) is obtained by a limit 
point (the minimum of the neutral curve) continuation, which is easily done with the 
AUTO software. 

First the effect of taking x = 1 instead of x = 0 is determined. For m = 0, A = 0.1, 
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FIQURE 4. Neutral curves for the axisymmetric mode m = 0 and the non-axisymmetric modes 
m = 1 and m = 2 atA = 0.1, B = 1 ,  P = 0.1 and S = lo4 (one-parameter family of base states (al)). 
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FIQURE 5. Neutral curves at different S for the axisymmetric (rn = 0) modes with P = 0.1, 
B = 1 and A = 0.1 (one-parameter family of base states (ail)). 

S =  lo4, B = 1,  P =  0.1 and x = 0, the values of R, and R, are 26.8 and 52.9, 
respectively. For x = 1 these values change to 26.8 and 55.1, respectively. That x 
does not influence R, is clear from the equations since it is multiplied by a. Since the 
effect of x on R, is small, we shall use the value x = 0 from now on; taking x = 1 
rather than x = 0 will not qualitatively change the picture of the neutral curves. 

In figures 5 and 6, the effect of secondary parameters is shown. Neutral curves for 
selected values of S are shown in figure 5 .  Between S = lo4 and S = lo5 there is a 
topological change in the neutral curves, similar to that in figure 3. The values of R, 
and R, are shown as functions of S, B and P in figures 6(a), 6(b) and 6(c), 
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FIQURE 0. Effect of the secondary parameters S, B and P on the region of complete stability of the 
axisymmetric (rn = 0) modes at A = 0.1 (one-parameter family of base states (4)). The shaded area 
in (a) shows the dependence of the region on S for P = 0.1 and B = 1 ; ( b )  shows the dependence on 
B for P = 0.1 and S = lo4; (c) shows the dependence on P for B = 1 and S = lo4. 
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P 
0 
0 
0 
0 
0.1 

10 
100 

B 
0.1 
1 

10 
103 
103 
103 
103 

R, 
422.97 
421.30 
416.36 
415.30 
415.16 
409.26 
365.80 

all 

0.977 
0.824 
0.693 
0.678 
0.678 
0.681 
0.750 

TABLE 1. Values of R, and a, for several P and B. The other parameter values are A = 0.1, 
S = lo4, m = 0 and M = 0. 

respectively. In  each part of figure 6, the hatched region indicates the window in R 
for which complete stabilization occurs. For S larger than about 7 x lo4 this window 
has disappeared. The window of stabilization increases with B ; no topological 
changes in the neutral curves are found. A topological change similar to that in figure 
5 occurs a t  P = 3.28, where complete stabilization disappears, just outside the view 
of figure 6 (c). 

In  summary, the range (Rl, R,) over which applied thermocapillary shear stresses 
stabilize capillary breakup increases with decreasing P ,  increases with increasing B 
and increases with decreasing S.  The qualitative picture of the neutral curve does not 
change with B. It can change on varying the other parameters, but there are only two 
topologically different possibilities. One of these implies a possible range of R (i.e. if 
R, < R,) for which complete stabilization exists (the picture for small P, small S and 
small A ) .  The other implies no complete stabilization, since long waves are always 
unstable. 

5.2. Base states subject to a gradient in ambient pressure : the two-parameter family 
As explained above, a two-parameter family of base states is obtained by considering 
the base-state axial pressure gradient 6 as a free parameter. Following Russo & Steen 
(1989), we use instead of 6 the parameter 

M = m'(p) 
and it follows readily that 

A negative value ofM implies that m(r)  has at least one zero on (p, y ) ,  and hence the 
base state has a return-flow character. For slender bridges, it is expected that the 
'return-flow ' solutions corresponding to no net flow through each cross-section are a 
reasonable approximation to  flows obtained in experiments with distant endwalls 
(boundaries in the z-direction). 

First we put S = lo4, M = 0, m = 0 and A = 0.1. The isothermal results can be 
obtained in the limits B +a, P + 0. Note that B +a alone does not decouple the flow 
field and thermal field as in Xu & Davis (1985) because p ( y )  is in general non-zero. 
Taking P = 0 and B = lo3, the isothermal results are indeed obtained up to 0.1 %, 
which is an extra check on the numerical techniques used. 

In table 1,  the values of R, and a, are given for different P a t  B = lo3 (monitoring 
the influence of non-zero ?'(y), with disturbance interfacial temperature T(y) z 0) 
and for different B a t  P = 0 (monitoring the influence of non-zero T(y), having 
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FIQURE 7. Neutral curves of the axisymmetric (m = 0) mode for M = 0, B = 1 A = 0.1 and 
S = lo4 are presented for P = 0.1 and P = 5 (two-parameter family of base states (gl)). 

R 

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

FIGURE 8. Neutral curves of the axisymmetric (m = 0) mode are shown for three values of M ,  
with S = lo4, B = 1, P = 0.1 and A = 0.1 (two-parameter family of base states (al)). 

a 

p ( y )  = 0). The value of R, depends only on the ratio P/B, as will be shown below, 
and is in each case equal to the isothermal value (R, = 149.22). We observe that by 
decreasing B, for P = 0, we can increase the range of stabilization R,-R,. Table 1 
shows that the (isolated) influence of the thermal base state on the disturbance flow 
field is weak for P up to 10. The (isolated) influence of the thermal disturbances on 
the disturbance flow field is weak over the whole B-range. 

However, the combined influence can have a large effect on the stabilization range 
as can be seen in figure 7. Here the neutral curves for P = 0.1, B = 1 and those for 
P = 5, B = 1 are presented for A = 0.1. Increasing P, for B = 1, destabilizes long 
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wavelengths and complete stabilization disappears. Notice that this transition is to 
a new qualitatively different picture, somewhat like the long-wave transition in A for 
the isothermal case (figure 9a in Russo & Steen 1989). 

For A = 0.1, P = 0.1, I3 = 1 and S = lo4 neutral curves are shown in figure 8 for 
M = 0, -0.01 and -0.05. The shear branch for M = -0.01 is not explicitly shown 
since it nearly coincides with the corresponding curvc for M = 0. One can see that for 
small negativeM complete stabilization disappears. This is similar to what was found 
in the isothermal case (Russo & Steen 1989). Long waves become unstable for base 
states with a slight return-flow character. 

6. Perturbation analysis for axisymmetric long-wave disturbances 
To study the mechanism of stabilization of long axisymmetric waves (as observed, 

for example, in Russo & Steen 1989 figure 9a and here in figure 7)  we use a 
perturbation approach a+O as in Benjamin (1957) and Yih (1963). After putting 
m = 0 and w = ac, the equations for the perturbation quantities become 

i&u+ia(tz-cC) w = 

( 1 4 4  

r = p :  u = w = T = O  r >  (15a) 
r = y :  u+iay(c-m) = 0, (15b) 

w, + iau + qm" = - ia(qP + T) 8% (154 

U 
u,+-+iuw = 0, 

r 
with boundary conditions 

- p +  2S-t(u,-iaym')-q(A2-a2) = S-lR(A(T+ yF') - pq(A2-a2)) ,  ( 1 5 4  
T,+BT+(P+BF' )q+iaq  = 0. (154 

Applying the perturbation expansions 

c = ~,+~tc ,+a2c ,+0(~3) ,  = a u , + a 2 u , + ~ ( a 3 ) ,  

w = ~ , + a w , + ~ 2 w , + 0 ( ~ 3 ) ,  = p 0 + ~ p 1 + c r ~ p , + 0 ( a 3 ) ,  

q = q0+aql+a2y2+O(a3),  T = T,+aT,+a2T,+O(a3), 
and using the normalization q0 = 1,  qr = 0, j = 1,2, ..., the perturbation equations 
are solved a t  each order of a. It turns out that  co is real and that c1 is determined by 
the following problem for wl(r)  : 
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where wo(r) = -ya”(y)  In ( r / / ? ) ,  iul(r) = +ytiY(y) (r-2rln ( r / /3 ) -P2/r ) ,  
c, = a ( y )  + iu,(y), p, = -A2 +AS-’R(AP(y) - p ( y )  - T,(y)) ,  

Z&(r) = -P@iu,(r), = - P ( y )  -~ -1(q , . (y )  + P ( y ) ) .  

It is easy to see that ul, w1 and c1 are imaginary; let K = Im (el). Recalling that the 
time-dependence of a disturbance is exp ( - iwt) = exp ( - iac, t + a 2 K t  + O(a3)) ,  per- 
turbations are amplified if K > 0, while if K < 0, they decay. The value ofR (implicitly 
in the base state) a t  the neutral curve (a .+ 0) is determined by solving K(R) = 0 for 
R. 

Defining f l ( r )  = Sb(a ( r ) - c , )  wo(r) - i d ( r )  ul(r)  +p,) one can show that 
n. 

Y K  = -S-iR+yS(y)- S(r)  fi(r) dr. J; 
Here d(r )  = h 2 l n  ( r / / 3 ) - a ( r 2 - p )  and 4 = (P(y)+T,(y)) .  Furthermore, it  is easy to 
show that 9 ( r )  is a positive function on [B,y] having a maximum at r = y. 

Equation (17) is the basic tool for explaining the mechanism of the shear 
stabilization of capillary breakup, as we shall see below. 

7. Mechanism of stabilization of axisymmetric long waves: isothermal case 
Since the non-isothermal case is most easily understood as a modification of the 

isothermal analysis, and since the mechanism of stabilization in the isothermal case 
has not previously been discussed, we present that case in some detail. We use the 
results from the long-wave analysis above and note that in the isothermal case (P = 
0, B =a), the value of + is zero and the right-hand side of (16a) is split into two 
pieces, i(po+b(r)), where the capillary pressure po = -A2 here, and where h(r) is 
defined by 

h ( r )  = (a -c , )  wo-i@’ul. (18) 

Inspection of the expression of the general (velocity) base state, shows that it is 
linear in both S-iR and M. Therefore, we can write a(r) = S-iRmR(r) +MmM(r),  where 
the definitions of aR and tij, follow immediately. Hence, we can write h ( r )  = 
8-1R2pRR(r) +S-&MpRM(r) + p p , M ( r ) ,  because 20, and uI are proportional to m”(y) 
and where the definitions of pRR,  pR, and p,, also follow immediately. Substituting 
this into (17), we obtain 

where the coefficients H ,  = J;pt(r) 9 ( r )  rdr  depend only on A. 
The function #(r) (equation (18)) represents an inertial acceleration effect due to 

the interchange of momentum between the base state and the disturbances. This 
momentum transfer gives rise to a flow which may be imagined, alternatively, as 
being caused by a pressure distribution. Since the origin of this ‘pressure distribution ’ 
is inertia, Smith (1989) calls the resulting function f i  an ‘inertial pressure’. 

For the moment we restrict consideration to M = 0. Since H, is negative, in view 
of (19) it follows that no stabilization can occur if 

8 
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(b) 
FIGURE 9. Sketch of the inertial acceleration effect due to the interaction of disturbances and base 
state. The axial acceleration (or deceleration) due to axial velocity disturbances (a), or due to 
normal velocity disturbances, (a), are represented by changes in velocities in the hatches regions. 

The equality sign provides the value of A ,  say A,, for which there exists no R to make 
K negative, i.e. A ,  is the boundary of shear stabilization of long waves. Through 
numerical evaluation of the integral, we obtain A ,  = 0.345478, in accordance with 
the results of Russo & Steen (1989, figure 9a)  where the neutral curves for all 
wavenumbers are calculated. For later discussion, we take this value to be the 
numerical definition of A,. 

In addition (M = 0 still), the positiveness of S(r)  provides S-’R2HRR(A) < t (y2-B2)  
9 ( y )  p ,  where P is the area-averaged inertial pressure 

P = 2(y2 -p2)-l1 r b(r) dr. (21) 

Hence ifp < 0, no stabilization can occur. It turns out that P = 0 provides an upper 
bound for A,. We obtain A = 0.36841 1 which has a relative error of about 7 YO. This 
upper bound supports the suggestion made by Smith (1989) that the average inertial 
pressure may be a good indicator for the stability of the system to long waves. 

7.1. Physical mechanism of stabilization: M = 0 
In the description below of the mechanism of the stabilization of capillary breakup 
for the case M = 0, we follow closely the method of Smith (1990), although he 
considers a planar two-dimensional problem and explains a classical instability. The 
normalization for 7 used means that the free-surface deformation has the form of a 
cosine wave ; 7 = exp (Im ( c )  at) cos {a(z- (Re ( c ) )  t }  ; this is the disturbance applied to 
the system. Consider for the moment only that part of the interface corresponding 
to a surface elevation (cf. figure 9). 

The leading-order effect of the elevation is a pressure decrease that is proportional 
to the interface deflection, initiating the usual capillary instability. Another effect is 
the appearance of a (disturbance) shear stress, at the interface equal to -zif’(y)q. 
This shear stress drives an axial velocity perturbation wo. This is the initiating 
mechanism of the shear instability. Hereafter a ‘growth stage’ starts. 
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FIGURE 10. Radial dependence of the inertial pressure h(r) for the isothermal case with R = 522.63, 
M = 0 ,  # = l o 4 :  (a) A = 0 . 1 ,  ~ ~ = 7 . 7 5 ~ 1 0 - ~ ,  ~ = - 3 . 7 6 ,  P = 1 . 1 3 ~ 1 0 - ' ;  (a) A=0.3,  c o =  
1.53 x lo-', K = - 1.53 x lo-', P = 1.18 x lo-' ; (c) A = 0.5, co = 4.00 x K = 3.61 x lo1, 
P = -5.84 x lo-'. 

In figure 9(a), consider the acceleration of the fluid particles due to the interaction 
of the base state and the axial disturbance (in the frame of the wave). Let r* denote 
the point where a = c, (note that this point might not exist on p, y ] ,  for all A). Then 
on [B,r*]  the fluid particles are accelerated from the bump, giving an effective 
stabilization. One can see this by looking at  the right side of the bump, for example. 
Here the base state (g-c,) convects the disturbance w, into an area where the 
disturbance velocities are larger. This effectively decreases the motion of the 
disturbance to the left. In the same way on [r*, y ]  the fluid particles are accelerated 
towards the bump which destabilizes the system. 

The normal velocity u, is out of phase with the interface deformation and is 
downwards on the right half of the bump and upwards on the left half of the bump. 
The interaction between the disturbances and the base state leads to a flow from the 
bump and is therefore stabilizing. Consider, for example, the right side of the bump 
in figure 9 (b). The normal velocity perturbation u1 moves fluid particles into a region 
where the base-state velocity is smaller (m' < 0), effectively accelerating these 
particles to the right. Hence, there is movement from the bump. 

In figure 10, the inertial pressure j ( r )  (equal to S-'R2pRR(r) for M = 0) is plotted 
as a function of r for A = 0.1,0.3 and 0.5. Here R = 522.63, which is the value at the 
neutral curve forA = 0.3, a+O andS = lo4. For A = 0.1 the base state is stable, while 
for A = 0.5 it is unstable. We observe that, as A decreases, the range of the function 
b becomes more positive. This fact and relation (19) suggest a direct connection 
between the range of b and the stability of the base state. Now 1 is the sum of (a- 
c,) w, and - iu, iij' and the values of c, are shown in the caption. Because c, is positive 
in each case, the function m-c,  has a zero in (B, y )  and because the function w, is 
negative for each A the product ( a - c , )  w, also has one zero in ( 8 , ~ ) .  The function 
-iul @' is a positive function. Clearly, for larger gap ratios the destabilizing capillary 
pressure along with shear effects swamps the stabilizing effects of shear. 

The relative magnitude of the destabilizing and stabilizing effects which arise from 
the inertial acceleration determine whether or not capillary brer ':up is stabilized. 
The competition between these effects is determined by the function b(r). A 
stabilizing effect is represented by a positive contribution to 1. The interval where 

8-2 
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A Ho H R ,  H R M  H M M  

0.1 -3.34 x 1.50 x lo-' 1.32 - 1.33 
0.3 - 1.02 x 10-1 3.73 x 10-8 4.58 x lo-' -4.34 x 10-1 
0.5 - 1.78 x lo-' - 1.99 x 10-2 3.20 x lo-' -2.43 x lo-' 
0.7 -2.77 x lo-' -9.46 x lo-' 3.13 x lo-' - 1.44 x 10-1 
0.9 -4.82 x lo-' -6.40 x lo-' 3.98 x lo-' -5.36 x lo-' 

TABLE 2. Values of the coefficients Has a function of the gap ratio A 

Ad Md S-k R, 
0.35 3.56 x lo-' 1.68 x 10' 
0.50 4.13 x lo-' 3.31 
0.65 1.13 2.65 
0.80 3.06 2.46 
0.95 1.71 x 10' 2.35 

TABLE 3. Values of (M,, S+R,) as a function of A,, for the isothermal case. For A, < A, there 
does not exist such a type of transition. 

is positive accounts for the positive pressure buildup in the interior of the layer, 
causing a net flow from the bump. As can be seen from figure 10, this interval gets 
bigger as A decreases and disappears with increasing A .  The competition determines 
the net result of the growth stage. A slightly different view of this stabilization 
mechanism has been presented in Russo (1990). 

For A --f 0, long waves are stable for M = 0 in the isothermal case (Smith &, Davis 
1982). In terms of the above mechanism, as the gap ratio gets smaller, the wave 
speed cO+O and the stabilizing influence of the axial perturbation velocity w, 
decreases while the stabilizing influence of the normal velocity perturbation u, 
increases. Taken in combination these two effects are always sufficiently stabilizing 
to beat the weakening destabilization of the capillary pressure (p ,  = -A2)  as A + 0. 

7.2. Results and mechanism : M + 0 
We now turn to M + 0 and ask whether stabilization of long waves can occur. In 
table 2, the values of the coefficients H as a function ofA are presented. Observe that 
only HRR changes sign (at A,) and that H i , - 4 H R R H M M  is always positive. 
Immediately from this table and (19) the following result is obtained: there can be 
no stabilization if 

(22) 
If D > 0, there are two possible situations for which stabilization to long waves can 
occur, depending on the number of real roots of the quadratic in R. In the first case 
(H;k(HO+IM2HMM) < 0 and M H R M / H R R  < 0 ) ,  long waves are stable for R > R, and 
unstable for R < R,. In the second case ( H & ( H , + W H M M )  > 0 and MHRM/HRR < 
0) ,  there is an interval (Rz, R,) for which long waves are stable. Since H ,  and H M M  are 
negative functions ofA, the first case occurs for A < A ,  and only ifM < 0. The second 
case occurs for A > A ,  and only if M > 0. 

In the second case, there may exist a transition at some Md where the interval (Rz, 
R,) shrinks to one point at Md and stabilization disappears for M passing through M d .  
This does indeed occur, and values of the critical point (Md,S-'Bd) are presented in 
table 3 as a function of A (which is indicated as A,). An example of this singularity 
occurs in figure 11 ( b )  in Russo & Steen (1989) near the A ,  = 0.5 (S = lo4) value. 

D = M2(H&-4HRRHMM)-4HRR Ho < 0. 
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FIGURE 11. Change of inertial pressure distribution + ( r )  for M = -0.5, 0 and 0.5, at R = 522.63, 
S = lop and A = 0.3. This illustrates the isothermal transition to_stable long waves as M is increased 
at A = 0.3: (a) M = -0.5, c, -3.12 x lo-', K = 3.92 x lo', P = -8.76 x 10-l; (b)  M =0, cn = 
1 . 5 3 ~  lo-', K = - 1 . 5 3 ~  P =  1 . 1 8 ~  lo-'; (c) M = 0.5, c,, = 6 . 1 8 ~  lo-', K = -3.27 x lo', P = 
9.46 x lo-'. 
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FIGURE 12. Change of inertial pressure distribution +(r)  with varying M ,  at R = 331.42, S = lo4, 
A = 0.5. This shows the isothermal transitiotat M = M ,  to stable long waves asM is increased :(a) 
M = 3 . 7 1 ~ 1 0 - ' ,  co~=3.41xlO-', K =  1.80, P = 2 . 1 4 ~ 1 0 - ' ;  (b )  M=4.13~10- ' ,  c ,=3 .76~10- ' ,  
~ = - 4 . 4 6 ~  P = 2 . 5 9 ~ 1 0 - ' ;  (c) M = 4 . 5 4 ~ 1 0 - ' ,  c , = 4 . 1 1 ~  lo-', ~ = - 1 . 7 5 ,  P =  3 . 0 3 ~  lo-'. 

Going back to the physics, we focus on two transitions where long waves are 
stabilized. For both transitions we compute the inertial pressure b ( r )  and the area- 
averaged inertial pressure P .  First, for A = 0.3, S = lo4 and for R = 522.63 we 
present b(r) for M = -0.5, 0 and 0.5 in figure 11. As M is increased the range of the 
function b is becoming more positive, leading to stabilization. Also P suggests a 
transition may occur since it changes sign between M = -0.5 and M = 0 (see figure 
caption). 

Second, we fix R = 331.42, S = lo4 and A = 0.5 and show this pressure distribution 
for M = 0.371, 0.413 and 0.454 in figure 12. Note from table 3 that at (Md = 0.413, 
S-iRd = 3.31) there is a transition of the second type discussed above. TheM-interval 
is chosen as [0.9Md, l.lMd]. The quantity P remains positive on this interval and 
hence in this case gives no indication of a transition. This emphasizes that a change 
in P is not necessary for a change in stability. 
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For both transitions (figures 11 and 12) the inertial acceleration effect due to the 
interaction of the base state and the disturbances causes the stabilization. Therefore 
the above-sketched mechanism (M = 0) also applies to the case of M =k 0. The main 
reason why a base state with a slight return flow is unstable to long waves is the fact 
that the phase speed c, becomes negative quickly for small negative M .  This enhances 
the destabilizing effect of the inertial acceleration due to the presence of the axial 
velocity disturbance (as sketched in figure 9 a ) .  

8. Mechanism of axisymmetric long-wave stabilization : thermocapillary 
case 

In  contrast to the isothermal case, the physical significance of the thermocapillary 
solutions for a+O is brought into question by restriction (9 ) .  Strictly speaking, 
restriction ( 9 )  is always violated in the long-wave limit. However, as illustrated in the 
previous section with regard to the isothermal flow, transitions which occur at finite 
wavenumber can often be brought into the long-wave regime by adjustment of the 
other parameters. Hence, as long as the transitions we study in the long-wave limit 
are robust, the understanding gained will be useful when the transitions are 
perturbed to occur at  finite wavelengths where restriction ( 9 )  can be satisfied. 

Applying the same decomposition of the general base-state velocity profile as in 
the previous section we obtain from (17) 

where Go = H,, GR, = H,, + (P /B)  FRR, G,, = H,, + (P/B)  FRM and G M ,  = H,, . 
Here FRR and F R M  depend only on the parameter A .  From (16), we observe that the 
thermal field influences the long-wave stability in two ways. First, the base-state 
temperature and the disturbance temperature at the interface exert an influence 
through the normal stress balance since the magnitude of the surface tension depends 
on temperature. This effectively changes the first-order (capillary) pressure 
disturbance. Second, gradients of the temperature field influence the (Marangoni) 
tangential stresses at  the interface. Both effects are incorporated in the coefficients 
FRR and FRM. For later reference, we need only split FRR into terms which represent 
these effects. Let FRR = FnRR+FtRR where the subscripts n and t refer to the normal 
and tangential effects, respectively. The values of the coefficients FnRR, FtRR and FRM 
are presented in table 4. We refer to these values below. 

Observe that for long waves, the disturbances depend on P and B only through 
P / B  which can be seen from the disturbance equations, since for a = 0, the thermal 
boundary condition decouples from the other equations. As in the isothermal case, 
we split the discussion of the thermocapillary caae into three parts. First we consider 
the one-parameter family of base states ; thereafter we discuss the two-parameter 
family cases, M = 0 and then M =k 0. 

8.1. One-parameter family of base states 
In this case, M is not an independent parameter, since M = S-hg(A) ,  where g(A) = 
(A2-2.4 +2)/(2(1 - A ) ) .  Substituting this in (23) we obtain 
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A E R R  E R R  F R M  

0.1 -9.48 x 10-3 6.17 x 4.61 
0.3 -3.84 x 10-2 2.38 x 1.34 
0.5 -9.39 x 5.51 x lo-% 7.12 x 10-1 
0.7 - 2.25 x lo-' 1.25 x lo-' 4.53 x 10-1 
0.9 -7.71 x lo-' 4.02 x 10-1 2.71 x 10-1 

TABLE 4. Values of the coefficients F as a function of A 

A (PlB), 
0.05 1.12 x 10' 
0.10 4.53 
0.15 2.34 
0.20 1.27 
0.25 6.55 x lo-' 
0.30 2.56 x lo-' 

TABLE 5. Values of the critical value (P/B), at which long waves become unstable for every R.  
Note that such a transition does not exist for A > A , .  

A ,  M ,  S t  R, 
0.1 -5.94 1.51 x lo8 
0.3 1.79 1.47 x lo2 
0.5 1.00 8.82 
0.7 6.89 x lo-' 1.35 
0.9 4.80 x lo-' 1.59 x lo-' 

TABLE 6. Values of M, and S-iR, for the thermocapillary case, P / B  = 1, aa a function of A,  

It turns out that the coefficient of Ra is always positive, which implies that there is 
always one positive R for which K = 0. This is in agreement with the numerical results 
presented in $5. 

8.2. Two-parameter family of base states : transition in P for M = 0 
The growth rate K is given by (23) with M = 0. We again have the immediate result 
that long waves are unstable if G R R  < 0 with equality sign at the point (A, (P /B)J .  
This explains the long-wave transition in P observed in figure 7; the value of 
(P/B) ,  = - H R R / F R R  = 4.53 for A = 0.1. Furthermore, since the long-wave restriction 
is the limiting restriction for general wavenumber, it also characterizes the transition 
to complete stabilization (cf. figure 6 c ) .  The dependence of this transition value 
(P/B) ,  on A is indicated in table 5. Note that because FRR is negative, this transition 
can only occur for A < A,( = 0.345478). We now turn to the mechanism of long-wave 
stabilization due to thermocapillary-driven flow that corresponds to this transition. 
The stabilization occurs for decreasing P, for M = 0, A = 0.1 and B = 1 (figure 7). 

The initiation stage is much like the one for the isothermal case. The only 
difference is the increase of p ,  (less negative) due to the dependence of surface tension 
on temperature (FnRR is positive). During the growth stage, the inertial pressures are 
unchanged, relative to the isothermal case. Long waves become unstable with 
increasing P due to the added Marangoni shear stress. The surface tension 
disturbance along the interface is in phase with the interface deflection. Since qRR 
is negative, the disturbance surface tension is positive (disturbance temperature is 
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negative) a t  surface elevations. A t  depressions, just the opposite occurs. The net 
result is a flow from depressions to elevations which is destabilizing. For large enough 
P,  this additional effect can destabilize long waves relative to the isothermal case. 

8.3. Two-parameter family of base states: transition in M ,  M =I= 0. 
Just as in the isothermal case, there can be transitions at  an Md where an R-interval 
for which long waves are stable disappears. Calculated values of &?d are presented in 
table 6. It is interesting that through the influence of the thermal field the values of 
Md can be negative. This situation occurs at  small A .  Hence even return-flow base 
states can be stable to long waves for a certain range of applied shear. 

9. Discussion 
A linear stability analysis shows that an annular film of liquid put in axial motion 

by a thermocapillary-generated shear (one-parameter family of base states) or some 
combination of thermocapillary-generated shear and an axial pressure gradient (two- 
parameter family of base states) can be stable to disturbances of all wavelengths for 
motions of moderate Reynolds number. In the absence of motion, the interface 
succumbs to the capillary instability (long wave) and for strong enough motions it 
is susceptible to surface-wave instability (short wave). Some evidence (largely 
experimental) suggests that the surface-wave instability is less dangerous (in that it 
may saturate nonlinearly to finite amplitudes) than the capillary instability which 
inevitably leads to a loss of integrity of the liquid film (breakup). We focus on the 
inhibition of the ‘stronger ’ instability, i.e. stabilization of the capillary instability. 

In terms of the neutral curves R vs. a,  complete stabilization appears as a window 
bounded above by the surface-wave neutral curve and below by the neutral curve 
corresponding to capillary instability. Results show that as control parameters are 
varied stabilization first occurs through a topological change in neutral curves. The 
gap ratio A is generally the parameter with the strongest influence. As A is decreased, 
for example, the (typical) topological change is described by a saddle-point 
singularity at  finite wavelength in the neutral surface ((R, a,A)-space, e.g. figure 3). 
It appears that, locally, this singularity, which marks the birth of the window of 
stabilization, is described by a quadratic form in R and a. Its occurrence at finite a 
means that several terms, at least, must be calculated if it is to be accessible to a long- 
wave analysis and even then there is no guarantee. Indeed, depending on the 
character of the perturbation expansion, it may be inaccessible even with the 
calculation of an infinite number of terms. Rather than undertake such a lengthy 
(and risky) calculation, we exploit the presence of additional system parameters P ,  
B and S (and M for the two-parameter family of base states) by adjusting their values 
to bring the ‘birth’ singularity to the long-wave limit. Appropriate adjustments of 
either S or P will do the job (figures 6 a  or 6c, respectively). In  this way, the fully 
numerical calculations justify the long-wave analysis even though the long-wave 
analysis violates restriction (9). The numerical calculations also yield a limited 
optimization of the stabilization windows. These calculations show that stabilization 
is favoured by small A ,  small P ,  large B and relatively small S. 

The long-wave analysis leads to a detailed understanding of the stabilization 
phenomenon. The axial velocity in the annulus, m, interacts with the induced axial 
and radial perturbation velocities, w’ and u‘, respectively, through the inertial 
terms, awl and mr u‘, to generate a disturbance ‘ pressure ’ field of opposite sign to the 
destabilizing pressure field due to the capillary disturbance. The strength of the 
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stabilizing ‘pressure’ field depends on the velocity profile and therefore is most 
strongly influenced by the parameters M and R.  On the other hand, for a fixed profile 
(fixed R and M )  the strength of the destabilizing pressure is controlled by the 
curvature of the base-state interface (i.e. by A )  : in particular, it vanishes as the mean 
interface radius becomes unbounded (as A -+ 0). 

This picture of the physical mechanism, drawn for the isothermal case, needs only 
slight modification to account for thermocapillary stabilization. Here, the applied 
shear stress 7 in the definition of R is replaced by the thermocapillary-generated 
shear n0(b and the additional parameters, Prandtl number P and Biot number B,  
influence the long-wave behaviour as P/B.  In the simplest case, M = 0, increasing 
P / B  increases the (mean) temperature at the interface and the imposed temperature 
gradient. This leads to competing influences on the disturbance growth rate. The 
enhanced surface temperature decreases the surface tension, weakening the capillary 
disturbance pressure (stabilizing), while the increased gradient increases the shear 
stress and thereby the growth rate (destabilizing). Over the range of gap ratios, the 
destabilizing effect is stronger (table 4) leading to an overall narrowing of the window 
of stabilization as compared to the isothermal case. When M += 0, there is an 
additional effect due to the influence of the thermal field on the disturbance velocity 
field, which is stabilizing for M > 0 and destabilizing if M < 0. This effect can 
dominate for M = 0(1) and A small. 

Finally, the long-wave analysis leads to an explicit algebraic form for the neutral 
points (limit of the neutral curves as a+O) in parameter space. This analytic 
equation verifies cases from the full numerical calculations (where the birth of 
stabilization has been observed to occur at a = 0) and predicts other births not yet 
observed. Thus, despite its contradiction to the restriction (9), the long-wave 
analysis is useful for the thermocapillary study, not only to develop the mechanism 
of stabilization, but as a check on the numerical solution and as a guide to regions 
of interesting behaviour in the parameter space. 
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